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Abstract. We consider a planar sample of non-chiral smectic C liquid crystal to which we impose
a tilted static electric field which is augmented by a weak low-frequency alternating field. Under
certain conditions it is known from the work by Stewart et al (Stewart I W, Carlsson T and Leslie F M
1994 Phys. Rev. E 49 2130) that the resulting motion of the c-director may be chaotic. This problem
has been studied in detail in Stewart et al (Stewart I W, Carlsson T and Leslie F M 1994 Phys.
Rev. E 49 2130, Stewart I W, Carlsson T and Ardill R W B 1996 Phys. Rev. E 54 6413) using a
Melnikov analysis approach for a particular form of perturbation when the dielectric anisotropy is
assumed to be positive. The addition of the oscillatory term to the field is therefore the cause of
more complicated behaviour. In this paper we shall discuss the case when the dielectric anisotropy
is assumed to be negative. We shall show that, by considering a linear approximation to the equation
of motion, the stability of the c-director cannot be guaranteed. Furthermore, we shall employ the
harmonic balance technique to the nonlinear equation in order to determine approximations for the
anticipated location of an ‘escape’ region in parameter space. The corresponding Melnikov criteria
for negative dielectric anisotropy will also be found and compared with the approximate ‘escape’
region.

1. Introduction

Smectic C liquid crystals are layered structures consisting of elongated molecules where the
long molecular axes are mathematically assumed to locally adopt one common direction in
space, as is consistent with the usual continuum theory. We refer to this common direction by
a unit vector labelled n called the director. Within the layers the molecules are not normal but
instead are tilted on average at an angle θ with respect to the layer normal. Hence the director
can be considered as lying on a cone tilted at an angle θ with respect to the layer normal. The
tilt angle depends on the temperature which, for our purposes, we shall assume to be constant
in order that we can make use of the continuum theory proposed in Leslie et al [3]. We shall
also assume that the layers are of constant thickness. We denote the unit layer normal by a

and the director by n. The director therefore makes an angle θ with a. We also introduce a
unit vector c which is the projection of the director onto the smectic planes and is therefore
perpendicular to a. This can be seen diagrammatically in figure 1. We can make the following
ansatz for a, c and n:

a = (0, 0, 1) (1.1)

c = (cosφ(z, t), sin φ(z, t), 0) (1.2)

n = a cos θ + c sin θ (1.3)
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Figure 1. Mathematical set-up of a smectic C liquid crystal. The director n is at an angle θ with
the layer normal a. The unit vector c is the projection of n onto the smectic planes and φ is the
phase angle of the c-director.

where φ is the phase angle assumed to be a function of z and time t . Clearly, knowing a and c

means that the orientation of n is known. The principal aim of this paper is to estimate possible
predictive criteria for the onset of complex nonlinear behaviour for solutions φ to the governing
equation (2.14), which is briefly derived below in the next section. This equation determines
the behaviour of the phase angle φ of the c-director when certain basic approximations are
introduced. The possibility of such complex behaviour will be of interest to both theoreticians
and experimentalists.

The techniques employed below are motivated by observations involving the stability
and instability regions for the Mathieu equation (see (3.4) below). This approach requires
particular constant coefficients (αε and βε) to be positive so that the methods indicated below
can be used. Such positive coefficients arise naturally when the dielectric anisotropy εa is
negative. In contrast to this, the techniques and results in [1,2] are applied when εa is positive.
The analysis introduced in this paper allows the results from [1, 2] to be extended to the case
of negative dielectric anisotropy. Qualitatively, the results presented below are similar to
those in the aforementioned articles. One major difference in the work presented below is
that a restriction has to be made on the range of the rescaled frequency (ω̄) of the augmented
oscillating electric field term: this is a consequence of using Mathieu’s equation to initially
determine the instability regions involving the frequency. Furthermore, these results create
additional interest because they also happen to naturally extend known results for related
nonlinear pendulum-type equations as discussed in [4–7]. A Melnikov analysis is also made
here, as in [1, 2], to predict the possible parameters for the presence of transient chaotic
behaviour. However, for many applications it is known that predicting parameter regions
where no major stable non-rotating orbits exist is of primary importance and under these
circumstances the parametrically excited pendulum is analogous to a system which allows
escape from a potential well. More complex behaviour can occur for parameters within
such ‘escape’ regions [4–7] as indicated below, including the possibility of large-time chaotic
behaviour. Such results clearly have an impact upon the interpretation of the orientation of the
director n in liquid crystals via the phase angle φ.

It should be emphasized that the results of this paper are intended to establish possible
predictive criteria for the occurrence of complex behaviour in the orientation of the liquid
crystal director. The actual validity of these criteria and the orientation of the director requires
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detailed numerical investigation. Such investigations will be possible using the results derived
below for predicting the regions of the physically relevant parameters which influence the
occurrence of complicated nonlinear behaviour.

2. Governing equations

We first make some remarks concerning the application of a static field before going on to
discuss the case of a static field augmented with a small amplitude oscillating field. As in
Stewart et al [1] we can an apply an external electric field to a homogeneous sample of smectic
C liquid crystal at a small positive angle α to the smectic plane:

E = E0(cosα, 0, sin α) (2.1)

where E0 = |E| is the strength of the electric field. The dynamic equation for the c-director
can be written as

B3
∂2φ

∂z2
− 2λ5

∂φ

∂t
− εaε0E

2
0(sin α cos θ + cosα sin θ cosφ) cosα sin θ sin φ = 0. (2.2)

Details of the derivation of this equation can be found in [1]. The physical parameters ε0 and
εa are the usual (positive) permittivity of free space and the dielectric anisotropy respectively,
which we assume here to be negative. Also, λ5 is the positive rotational viscosity related to the
movement of the director round the cone whose semi-vertical angle is the smectic tilt angle θ

and B3 is the positive elastic constant related to the rotation of the c-director as we move from
layer to layer.

We note that (2.2) can be rewritten for negative dielectric anisotropy by introducing the
scalings

λ = 1

E0

√
B3

−εaε0
(2.3)

t0 = 2λ5

−εaε0E
2
0

(2.4)

and so (2.2) becomes

λ2 ∂
2φ

∂z2
− t0

∂φ

∂t
= −(sin α cos θ + cosα sin θ cosφ) cosα sin θ sin φ. (2.5)

We now give a brief account of the approximations that are made and the equation of
motion which results from combining the static field with a slowly oscillating ac field. First,
we assume that the tilted field angle is small such that

0 < α � 1. (2.6)

In order for complex motion of the c-director to occur the static field is augmented by a weak
low-frequency alternating field. We achieve the ac field by initially considering a static field
and then superimposing an ac field of slowly varying frequency and so E0 in (2.2) is replaced
by

E0 → E0[1 + (ε/2) cos(ωεt)] (2.7)

where ωε is the frequency of the ac field and ε is suitably small. We also suppose that

ε = ξα ξ > 0 (2.8)

which is used to make the problem more tractable. There are no known exact travelling
wave solutions available for (2.5). However, the corresponding problem for positive dielectric
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anisotropy shown in [1] is known to possess soliton-like solutions as discussed in Schiller
et al [8], Stewart [9] and van Saarloos et al [10]. Motivated by these soliton-like solutions
discussed in [1] we make the following ansatz for φ:

φ(z, t) = φ(τ) (2.9)

τ = z

λ
sin θ − t

t0
α sin2 θ + d (2.10)

where d is an arbitrary constant which is then set to be

d = − sin θ

λ
z0 (2.11)

so that when |z − z0| � 1 is considered, further basic approximations can be made. For
example:

α cos(ωξαt) ≈ α cos(ω̄t) (2.12)

where we define

ω̄ = ωξt0

sin2 θ
. (2.13)

With these assumptions the equation of motion (2.5) can be approximated for small α and ε

by

d2φ

dτ 2
+ α

dφ

dτ
= −α cot θ sin φ − 1

2
[1 + ξα cos(ω̄τ )] sin(2φ). (2.14)

This equation is of a similar form to that discussed in [1] and can be considered as an adaptation
of the nonlinear pendulum-type equation considered in [4–7, 11]. Consequently, the results
presented below will also be of interest to the wider scientific community. As in a similar
approach in [5], it is the establishment of expected parameter ranges which may lead to complex
behaviour that is the aim of this paper. Numerical work is nearly always necessary to gain
accurate information about the nonlinear phenomena associated with equations such as (2.14),
and this aspect of the analysis is beyond the scope of this paper. It is therefore expected that
the results presented below will guide future numerical investigations not only to (2.14) but
also (2.2).

3. Analysis of the linearized problem

As a preliminary study of the equation of motion of the c-director we shall consider the linear
approximation to (2.14). This will give us some insight into the application of nonlinear
techniques used later in this paper. First, we make the substitution

t̄ = ω̄τ (3.1)

and then we linearize in φ, enabling (2.14) to be rewritten as

d2φ

dt̄2
+
α

ω̄

dφ

dt̄
+

1

ω̄2
[1 + α cot θ + ξα cos t̄]φ = 0. (3.2)

This is of the form of Mathieu’s equation with damping as defined in Jordan and Smith [12,
p 259]. In order that we can transform (3.2) into Mathieu’s equation we now make the following
transformation:

φ(t̄) = exp
(
− α

2ω̄
t̄
)
ρ(t̄) (3.3)



Nonlinear pendulum-type equation arising in smectic C liquid crystals 4603

where ρ(t̄) is simply another function in t̄ and so (3.2) can be written as

d2ρ

dt̄2
+ [αε + βε cos t̄]ρ = 0 (3.4)

where

αε = 1

ω̄2

[
1 + α cot θ − α2

4

]
(3.5)

βε = ξα

ω̄2
. (3.6)

Equation (3.4) is Mathieu’s equation and we can now use standard results in order to analyse
the behaviour. It can be seen that stable solutions of (3.4) are clearly stable for (3.2) because
of the nature of the transformation given in (3.3). Similar results for unstable solutions are
more complex. Regions where instability is guaranteed can be calculated and details of these
unstable regions can be found in Grimshaw [13] and Hagerdon [14]. Mathieu’s equation has
stable and unstable solutions depending on the values of the parameters αε and βε . Transition
curves in the αε , βε-plane separating the stable and unstable solutions are easily calculated by
perturbation techniques and can be found in many textbooks on nonlinear equations (e.g. [12]).
We note that the following hold:

ω̄ > 0 α > 0 ξ > 0 0 < θ <
π

2
(3.7)

and so αε > 0 and βε > 0. In this region there are both stable and unstable solutions to
Mathieu’s equation. In order to determine which parameter values guarantee stable solutions
to (3.2) via (3.4) we need to study the areas round the points αε = 1

4 , 1, 9
4 . . . . If ω̄ < 1 and

α � 1 then αε− > 1 and, in general, solutions will be stable except for specified values of
ω̄ corresponding to αε− = n2

4 where n is a positive integer greater than 2. The most likely
parameter values to result in unstable solutions occur around αε− = 1

4 . By considering (3.5)
this occurs, for small α, near ω̄ = 2. Solutions to (3.4) which are unstable may not necessarily
guarantee unstable solutions to (3.2) due to the nature of the transformation (3.3). Nevertheless,
stability also cannot be guaranteed and this motivates the choice of parameter values for study
in the next section, in particular for ω̄ ≈ 2. Also, at this point, we make note that, for the case
where the dielectric anisotropy is positive, it is well known that the solutions to (3.4) with the
appropriate changes made to (3.5) and (3.6) are generally unstable for the parameter ranges
shown above.

4. Melnikov criterion and harmonic balance technique

We are now in a position to consider some nonlinear techniques in an attempt to establish some
results for predicting the parameter zone in which no major stable non-rotating orbits exist,
termed the escape zone in [5]. First, we can find the Melnikov function, M(τ0), in a manner
similar to that employed in [1]. It can be shown that, for negative dielectric anisotropy, M+(τ0)

can be written as

M+(τ0) = ξ

2
πω̄2csch

(
ω̄π

2

) [
sin(ω̄τ0) − 4

ξπω̄2
sinh

(
ω̄π

2

)]
(4.1)

and this has simple zeros if∣∣∣∣ 4

πω̄2
sinh

(
ω̄π

2

)∣∣∣∣ < ξ. (4.2)
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The case for M−(τ0) is similar and it can be shown that M−(τ0) = M+(τ0). Details of this
calculation can be found in the appendix based upon the work in [1]. The method of Melnikov
is known to give the region in parameter space where a homoclinic orbit or a heteroclinic orbit
between two equilibrium points begins to break up. The boundary of this region, known as
the Melnikov curve, is given by an equality in (4.2). The onset of chaos, in the sense of Smale
horseshoes, may follow the break up of the homoclinic or heteroclinic orbits. However, it is not
a necessary condition that fully chaotic motion occurs and hence parameter values lying within
the region corresponding to the Melnikov analysis may or may not result in fully chaotic motion
of the c-director. Nevertheless, the Melnikov curve is often a good criterion for determining
transient chaos [7]. It has been shown in [6] that a pitchfork and symmetry-breaking bifurcation
may form a bound for the escape zone. These bifurcations can be approximated mathematically
and are known in some explicit cases to give more exact bounds for the escape zone where
large-time chaotic behaviour can occur [5].

Differential equations involving sinusoidal nonlinearities and forcing terms have been
successfully studied using a harmonic balance criterion in [4] and [5] in which the dynamic
equation arising from the parametrically excited pendulum is considered. In [11] the authors
use the same technique to study a natural extension of the pendulum equation which is known to
occur in the smectic liquid crystal literature. The dynamic equation in [11] arises from a study
of the same physical problem outlined in this work but for a different form of perturbation.
We follow the work of [4, 5] and [11] in which a study is made of parametrically excited
pendulum-type equations. In particular these authors conjecture that the chaotic region can be
approximated by seeking out bifurcations which occur prior to chaos. They use the method of
harmonic balance to predict where these bifurcations occur. We assume that the motion of the
director is sinusoidal and we study the motion which originates close to the first Mathieu zone,
the region where the transition curves first intersect on the α-axis. Motivated by the initial
work on the linearized problem in section 2 we therefore consider the region around the point
αε = 1

4 and so we choose to study only the case when the diamagnetic anisotropy is negative
and ω̄ ≈ 2.

We first assume, following the method in [4] and [5], that the solution to (2.14) is of the
form

φ(t̄) = φ0 + A cos(v(ω̄t̄ + β)) (4.3)

where v = 1
2 corresponds to the primary unstable zone around the point ω̄ = 2. In order to

make further calculations clearer we also set

T = 1
2 (ω̄t̄ + β). (4.4)

We substitute (4.3) into (2.14) to obtain

− ω̄2

4
A cos(T ) − αω̄

2
A sin(T ) + α cot θ sin(φ0 + A cos(T ))

+ 1
2 [1 + ξα cos(2T − β)] sin(2φ0 + 2A cos(T )) = 0. (4.5)

In (4.5) we make use of the identities in Abramowitz and Stegun [15, p 361]:

cos(x cos y) = J0(x) + 2
∞∑
n=1

(−1)nJ2n(x) cos(2ny) (4.6)

sin(x cos y) = 2
∞∑
n=1

(−1)n−1J2n−1(x) cos((2n − 1)y) (4.7)

where Jn is the Bessel function of the first kind of order n. When we equate terms which are
constant or involve sin(T ) or cos(T ) to zero, ignoring any higher harmonics inT , equation (4.5)
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yields

sin φ0{α cot θJ0(A) + cosφ0[J0(2A) − ξαJ2(2A) cosβ]} = 0 (4.8)

−αω̄

2
A +

1

2
ξα cos 2φ0 sin β(J1(2A) + J3(2A)) = 0 (4.9)

− ω̄2

4
A +

1

2
ξα cos 2φ0 cosβ(J1(2A) − J3(2A))

+2α cot θ cosφ0J1(A) + cos 2φ0J1(2A) = 0. (4.10)

Equation (4.8) can be split into the symmetric solution

sin φ0 = 0 (4.11)

and the asymmetric solution

α cot θJ0(A) + cosφ0[J0(2A) − ξαJ2(2A) cosβ] = 0. (4.12)

For the symmetric solution φ0 = 0, (4.9) and (4.10) can be suitably squared to eliminate β

yielding the relevant symmetric condition
1
4ξ

2α2(J1(2A) + J3(2A))
2(J1(2A) − J3(2A))

2

−
(
J1(2A) − ω̄2

4
A + 2α cot θJ1(A)

)2

(J1(2A) + J3(2A))
2

−
(
αω̄

2

)2

A2(J1(2A) − J3(2A))
2 = 0. (4.13)

For light damping, β ≈ 0, the asymmetric equation reduces to

ε ≡ ξα = α cot θJ0(A) + J0(2A)

J2(2A)
. (4.14)

As in [5] and [11] we can solve simultaneously the condition (4.13) for the symmetric solution
to occur and the condition (4.14) for the asymmetric solution to occur numerically. For a fixed
ω̄ we substitute (4.14) into (4.13) and solve (4.13) numerically for A using a nonlinear solver
noting, by the form of (4.3), that we wish to consider solutions of small amplitude, namely
A ≈ 1. We can then substitute this value of A into (4.14) to obtain the corresponding value of
ε. By varying the values of ω̄ this provides a locus of points in the ω̄, ε-plane corresponding
to the symmetry-breaking bifurcation curve for fixed values of θ , α and ξ .

By considering (4.13) it is possible to determine saddle node bifurcation points as has
been accomplished in [4] and [5]. These occur when the number of solutions varies as the
parameter values are changed, and can be found using a vertical tangency condition where
dA/dω = ∞. As in [11], we can define the left-hand side of equation (4.13) as f and then
dA/dω = −fω/fA where the subscripts denote partial differentiation. We can expand dA/dω
in A to find that

dA

dω
= − (1 − 1

4ω
2 + α cot(θ))ω − 1

2α
2ω

ε2 − 4(1 − 1
4ω

2 + α cot(θ))2 − α2ω2
A + O(A3) (4.15)

and so, for small A, dA/dω = ∞ when

ε2

4
−

(
1 − ω̄2

4
+ α cot(θ)

)2

− α2ω̄2

4
= 0. (4.16)

This curve in the ω̄, ε-plane corresponds to a subcritical bifurcation and can be found by
linearizing equation (2.14) in φ to Mathieu’s equation, as in [12]. The curves corresponding
to the symmetry-breaking and subcritical bifurcations are plotted in figure 2 for α = 1◦
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Figure 2. The symmetry-breaking bifurcation curve and the subcritical bifurcation curve plotted
in the ω̄, ε-plane. Also plotted is the Melnikov curve. As expected, the anticipated escape region
lies above the Melnikov curve. ε is related to the amplitude and slowly varying frequency effect
of the superimposed oscillating electric field introduced in equation (2.7).

and θ = 20◦. We have also plotted the Melnikov curve and it can be seen that the escape
region bounded by the two bifurcation curves lies above the Melnikov curve. This is to be
expected, especially since figure 2 is reminiscent of figures 12 and 13 in [7] where the Melnikov
curve generally lies below both the period-doubling and subcritical bifurcations. However, we
have used the symmetry-breaking bifurcation to approximate the cascade of period-doubling
bifurcations which is hard to predict analytically. The first period-doubling bifurcation is
equivalent to the symmetry-breaking bifurcation for the case of symmetric systems and is
often sufficiently close to the final bifurcation to provide a reasonable estimate.

Figure 2 reveals qualitatively that as ε increases the opportunity for complex behaviour in
the solution φ of equation (2.14) also increases. The amplitude and slowly varying frequency
of the oscillating field contribution in (2.7) to the liquid crystal problem are controlled by the
magnitude of ε and, therefore, whenever the assumptions introduced above are feasible, the
general orientation angle φ of the c-director may exhibit complex behaviour as ε increases,
perhaps especially in the low-frequency regime.

5. Discussion

An analysis for a special time-dependent perturbation to the dynamic equation (2.2) (leading
to equation (2.14)) arising in the smectic C liquid crystal literature has revealed the possibility
of predicting problem-related parameter regions where complex behaviour may be present,
motivated by similar methods presented in [5,7]. The techniques employed in [5] for nonlinear
pendulum-type equations have been extended to equation (2.14) in order to derive predictive
criteria for the onset of complex phenomena. The main results are presented in figure 2 where
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an expected ‘escape’ phenomena region in the ω̄, ε-plane is displayed. The parameter ω̄ is a
rescaled frequency and ε is the parameter which, as introduced in equation (2.7), is a measure
of the amplitude of the superimposed oscillating electric field and its slowly varying frequency.
It is easily seen from figure 2 that as ε increases, that is, as the magnitude of the oscillating field
contribution increases, the possibility of complex behaviour also increases. This is similar to
what can happen for various types of nonlinear oscillations subjected to a periodic driving
force such as F cos(ωt): complex behaviour patterns can emerge as F increases leading to
chaos/escape regions in the analogous ω,F -plane (see, e.g., figure 10 in [7]).

The possible escape parameter region presented in figure 2 is, of course, related directly
to equation (2.14) and may act as a guide to future numerical investigations of (2.14). Such
work will clearly be of wider interest because of the close relationship of (2.14) to nonlinear
pendulum-type equations. The results clearly have an impact upon the liquid crystal problem
outlined in section 1 when equation (2.2) is subjected to a perturbation imposed upon its electric
field contribution. Section 3 reveals that the basic approximations and assumptions used in
section 1 to yield the governing perturbed equation (2.14) (in this sense) may lead to complex
behaviour of the solution φ, which is the phase angle orientation of the c-director within the
planes of the smectic C liquid crystal sample. It is therefore anticipated that complex/chaotic
motion of the director may be present for the problem described in section 1 whenever the
given approximations introduced may be appropriate to yield equation (2.14). Numerical
investigation of both (2.2) and (2.14), guided by the results of section 3 above, will therefore
be of interest, not only to the liquid crystal community, but also to researchers working on
nonlinear dynamics related to pendulum-type equations.
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Appendix

In order to make use of Melnikov’s method we need to rewrite (2.14), using (2.8), in the form

d

dτ

[
φ

v

]
=

[
v

− 1
2 sin(2φ)

]
+ α

[
0

−v − cot θ sin φ − (ξ/2) cos(ω̄τ ) sin(2φ)

]

=
[
f1(φ, v)

f2(φ, v)

]
+ α

[
g1(φ, v, τ )

g2(φ, v, τ )

]
= f(φ, v) + αg(φ, v, τ ) (A.1)

where v = dφ/dτ .
We now consider the phase portrait of the unperturbed system. We have the same

equilibrium points as with the case when εa > 0 but in the current case the saddles occur
when v = 0, φ = (2n + 1)π/2 and the centres occur when v = 0, φ = nπ , where n is an
integer. Thus, instead of considering the heteroclinic orbit which occurs in the phase plane
between 0 and π , as in [1], we instead study the heteroclinic orbit in the phase portrait for φ
between −π/2 and π/2. The unperturbed system has a Hamiltonian, H , given by

H(φ, v) = 1
2v

2 − 1
4 cos(2φ) (A.2)

from which the equilibrium points can be found and their nature determined. The upper and
lower heteroclines forming the heteroclinic orbit are also the separatrices in the phase plane
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and occur when H = 1
4 when

v+ = cosφ (A.3)

v− = − cosφ (A.4)

respectively. Since the phase plane for the case when εa < 0 is the same as the phase plane
for the case when εa > 0, except for a phase shift of π

2 , it is not surprising to find that the
heteroclinic orbits can be found to be

q0
+(τ ) = (φ0

+, v
0
+) =

(
2 tan−1[exp(τ )] − π

2
, sechτ

)
(A.5)

q0
−(τ ) = (φ0

−, v
0
−) =

(π
2

− 2 tan−1[exp(τ )],−sechτ
)

(A.6)

where, again, −∞ < τ < ∞. Nevertheless the application of the Melnikov technique leads to
qualitatively different results in this case, since the evaluation of the integrals for M+ change
dramatically compared to the M+ calculations in [1].

We are now in the position to evaluate the Melnikov function but first we note that

sin φ0
+(τ ) = tanh τ (A.7)

sin φ0
−(τ ) = − tanh τ (A.8)

sin 2φ0
+(τ ) = 2sechτ tanh τ (A.9)

sin 2φ0
−(τ ) = −2sechτ tanh τ (A.10)

and so, by (A.1), from the usual definition of M+,

M+(τ0) =
∫ ∞

−∞
f(q0

+(τ )) ∧ g(q0
+(τ ), τ + τ0) dτ

=
∫ ∞

−∞
v0

+(τ )

[
−v0

+(τ ) − cot θ sin φ0
+(τ ) − ξ

2
cos(ω̄(τ + τ0)) sin(2φ0

+(τ ))

]
dτ.

(A.11)

Making use of (A.7) and (A.8) we obtain

M+(τ0) =
∫ ∞

−∞
sechτ [−sechτ − cot θ tanh τ − ξ cos(ω̄(τ + τ0))sechτ tanh τ ] dτ

= −
∫ ∞

−∞
[cot θsechτ tanh τ + sech2τ ] dτ

−ξ

∫ ∞

−∞
[cos(ω̄(τ + τ0))sech2τ tanh τ ] dτ = −2 − ξI (A.12)

where I is the integral on the third line. This integral has been solved in [1] by integrating by
parts and using Gradshteyn and Ryzhik [16, p 505] to give

I = −π
ω̄2

2
sin(ω̄τ0)csch(ω̄π/2) (A.13)

and hence

M+(τ0) = ξ

2
πω̄2csch

(
ω̄π

2

) [
sin(ω̄τ0) − 4

ξπω̄2
sinh

(
ω̄π

2

)]
. (A.14)

Thus we will have simple zeros if∣∣∣∣ 4

πω̄2
sinh

(
ω̄π

2

)∣∣∣∣ < ξ. (A.15)
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It is interesting to note that when εa < 0 then the condition for Smale horseshoes to exist is θ
independent, whereas when εa > 0 the same condition is dependent on the smectic tilt angle
θ .

A similar analysis for the M−(τ0) case can made using (A.8) and (A.10). It can be
shown that, in this case, M−(τ0) = M+(τ0) and so the condition for simple zeros to exist is
exactly (A.15). (Remark: this is in contrast to the results in [1] where M+ �= M− in general
for εa > 0.)
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